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The stopping mechanisms of relativistic electron beams in superdense and partially degenerate electron fluid
targets are investigated in the framework of the fast ignitor concept for inertial confinement fusion. In order to
comply with specific demands in this area, we focus attention on the target partial degeneracy parameteru
=Te/Tf, in terms of the thermal to Fermi temperature ratio. The target electron fluid is thus modeled very
accurately with a random phase approximation dielectric function. The stopping results are shown to be very
weaklyu dependent. However, a quantum target description is needed to recover their correct increasing trend
with increasing projectile energy. The ranges and effective penetration depths in precompressed thermonuclear
fuels are shown to be nearly a factor of 2 shorter than earlier classical estimates in the same conditions. The
overall conclusions pertaining to the feasibility of fast ignition thus remain unchanged.
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I. INTRODUCTION

For several years, the interaction of very intense relativ-
istic electron beamssREB’sd with superdense and precom-
pressed deuterium+tritiumsDTd thermonuclear fuel has re-
mained a field of rather intense scrutinyf1–3g. This trend is
largely motivated by advanced and sophisticated proposals
advocating a careful time sequencing of the target fuel com-
pression followed by ignition. It is well known that the
former process is a thousand times cheaper than the latter
f4g. So it has been a continuous struggle in the field of iner-
tial confinement fusionsICFd to disentangle as much as pos-
sible the compression phase from the climax culminating in
ignition.

Fusion physicists have presently convinced themselves
that such a decoupling is now feasible with the use of the
so-called petawattsPWd lasersf5,6g. These lasers, operating
on a very short timescale, of the order of a fraction of a
picosecond, can produce very intense REB’s, in the MeV
energy range, when focused on a cold or hot plasma inter-
face. This beneficial feature is largely, but not totally, due to
ponderomotive acceleration.

These REB’s have been demonstrated able to produce
easily a well-localized hot plasmashot spotd in the precom-
pressed fuel. In this regard, it should be mentioned that the
total decoupling of ignition from compression allows us to
consider indifferently any driver: laser, heavy ion,Z pinch,
etc. for the initial compression phase.

The figure of merit qualifying the success of this sequen-
tial ignition, also called fast ignitionsFId, is the REB pen-
etration distance in the densest part of the DT core, at
300 g/cm3, which corresponds to an electron number density
n,1026 cm−3. The compressed core usually presents itself as
a spherical pellet with a diameter,30–60mm. The outer
layers are less dense with a continuous density gradient
down to the coresFig. 1d.

REB’s with 1 MeV kinetic energy should have a penetra-
tion depth,10 mm which is also the nearly rectilinear stop-
ping distance for the 3.5 MeV thermonucleara particles re-
quired to sustain an exoenergetic fusion process. The latter is
dynamically secured by having the produced hot spot travel
through the remaining cold compressed fuel. Typically, heat-
ing initially and selectively 2%f4g of this cold fuel should
prove sufficient for running a successful and economically
rewarding fast ignition.

The envisioned fast ignition scheme driven by a PW-
laser-produced REB is schematically outlined on Fig. 1. We
expect the given hot spot plasma to be located somewhat off
center, in contradistinction to the usual scheme based on cen-
tral spot ignition, where ignition features the unavoidable
conclusion of a sudden entropy rise in the overcompressed
fuel.

As far as local heating of compressed DT plasma is con-
sidered, it should be recalled that most of the REB kinetic
energy gets transferred to the target electron fluidsTEFd
through relativistic stopping mechanisms detailed below.
Subsequently, the TEF equilibrates its temperature with the
target ion fluidsTIFd and heats it to thermonuclear tempera-
ture. Earlier and related investigations have been restricted to
a classical TEF description.

*Present address: Department of Physics, Kazakh National Uni-
versity, Tole Bi 96, ALMATY 480012, Kazakhstan.

FIG. 1. Relativistic electron beam propagation with MeV in-
coming energy through layers of increasing densityNp in a core of
precompressed DT fuel.

PHYSICAL REVIEW E 71, 026407s2005d

1539-3755/2005/71s2d/026407s8d/$23.00 ©2005 The American Physical Society026407-1



The intense efforts, both experimental and numerical,
presently developing in the field of beam-target interaction of
FI concern have motivated us to revisit the conclusions of
the classical approach. We thus pay attention to the TEF
arbitrary degeneracyu=Te/Tf which is due to the very high
densitynù1023 e cm−3 as well as the thermal temperatureTe
which can remain at a modest level in view of the envisioned
adiabatic precompressionf4g. According to standard FI sce-
nariosf1,2g ssee Fig. 1d Tf takes values between 8 eV at the
outer surface and nearly 800 eV in the dense core. The clas-
sical description is thus equivalent to the high temperature
limit. We thus intend to pinpoint any significant departure
from this limit for the REB range and penetration depth in
the TEF.

The present paper is structured as follows. In Sec. II, the
random phase approximationsRPAd is seen to be fully ad-
equate to qualify theu-dependent TEF dielectric function
«sk,vd.

This formulation is then used in Sec. III to implement a
Landau scheme for REB relativistic stopping in the given
TEF. The density profile of the precompressed DT core is
approximated by a steplike profilesFig. 1d to allow us to
restrict attention to a homogeneous target approximation.

The global features of relativistic stopping are detailed in
Sec. IV. These include density dependence as well as varia-
tions of the REB kinetic energy. Ranges and penetration
depths are considered in Sec. V, while multiple and elastic
scattering of projectile electrons on the TIF are also taken
into account. These results are finally contrasted with earlier
classical ones in the outlook Sec. VI, where we also provide
some estimates ofe-foldings pertaining to the transverse
electromagnetic Weibel instability in order to secure a domi-
nant collisional regime for REB stopping in the precom-
pressed plasma target.

II. PARTIALLY DEGENERATE ELECTRON FLUID

Temperature-dependent dielectric functions for dense
TEF’s have been extensively investigated, within a homoge-
neous approximationf7–10g initiated by Skupsky in the con-
text of laser direct driven ICFf7g. At very high target densi-
ties, as in the present case, one expects the random phase
approximation to provide an excellent model. Correcting it
through local field correctionsLFCd f11g factors Geskd, in
Fourier space, one can thus secure a well-behaved largek
ssmall distanced behavior through the standard formulation

«sk,vd = 1 −
weeskdxe

0sk,vd
1 + weeskdGeskdxe

0sk,vd
, s1d

with weeskd /k2 the Fourier transform of the interparticle po-
tential, andxe

0sk,vd the response function of the equivalent
free fermion system.

It is a gratifying feature of the present formulation that
relativistic stopping powers estimated in Sec. III with true
LFC’s pertaining to a dense electron fluid yield data differing
by less than 10−4 from those withGskd;0. So the RPA
smean fieldd approximation for«sk,vd with Gskd=0 proves
highly adequate for the situation at hand.

This allows us to consider TEF degeneracy effects
through

weeskdxe
0sk,vd = F1sk,vd + iF2sk,vd,

with fa0 is the Bohr radiuss4p /3drs
3=1/na0

2g

F1 = sk,vd = −
ars

4pQ
FfS z

Q
+ QD − fS z

Q
− QDG s2d

and

F2sk,vd = − i
arsu

8Q3 ln31 + expFh −
1

u
S z

Q
− QD2G

1 + expFh −
1

u
S z

Q
+ QD2G4 , s3d

wherea=s4/9pd1/3, h is the chemical potential,Q=k/2kF,
kF=s3p2nd1/3 is the Fermi wave number, andz="v /4EF.
fsxd has the form

fsxd =E
0

`

dy
y

1 + expsy2/u − hd
lnUx − y

x + y
U . s4d

Expressionss1d, s2d, and s3d are valid for any temperature
and in the limiting case of large temperaturessu@1d they
yield back the dielectric function of a classical electron
plasma,

«sk,vd = 1 +
kDe

2

k2 WS v

kvTe
D , s5d

wherekDe=1/lDe is the inverse of the electron Debye length,
vTe is the electron thermal velocity, andsFried-Conted f12g

Wszd = 1 −zexpS−
z2

2
DE

0

z

dy expSy2

2
D + iÎp

2
zexpS−

z2

2
D .

s6d

Calculations of the longitudinal dielectric functions1d of
the partially degenerate electron fluid were then performed
employing methods proposed in Refs.f7–10g. The validity of
the dielectric function calculation has been confirmed
through adequate sum rules.

III. RELATIVISTIC ELECTRON ENERGY LOSSES
IN PLASMA

It is well known that a relativistic charged particle moving
in a plasma transfers its energy mostly to the surrounding
electronic matter. A theoretical description of this process
can be performed using the standard expressionf13g

−
dE

dx
= −

e2

p v2E
0

`

dk kE
−kv

kv

dv v

3Im
1 − v2«sk,vd/c2

«sk,vdfk2 − v2«sk,vd/c2g

; −
e2

p v2E
0

`

dk Fskd, s7d
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wheree and v are the charge and velocity of the projectile
selectrond, andc is the speed of light. The dielectric function
expressionss1d–s3d used in this work give as accurate
quantum-mechanical space and time dispersion description
of the electromagnetic field in the plasma medium. Conse-
quently, evaluation of the expressions7d with the dielectric
functions s1d–s3d provides the full spolarizational
+collisionald charged particle energy losses in contrast to the
case of calculation ofs7d with the classicals5d or dispersion-
less dielectric functions used earlier.

This intriguing feature arises from the quantum formula-
tion s2d ands3d for «sk,vd. It is vividly documented on Fig.
2 with plots of thek integrand in Eq.s7d, i.e.,

Fskd = − kE
−kv

kv

dv v Im
1 − v2«sk,vd/c2

«sk,vdfk2 − v2«sk,vd/c2g
, s8d

given for the Fried-Conte classical expressionss5d and s6d
fsee Fig. 2sadg and the quantum RPA oness2d and s3d in
terms ofQ=k/2kF, for n=1026 ecm−3 and electron energy
E=2 MeV fFigs. 2sad and 2sbdg and 20 MeVfFig. 2scdg at
n=1025 ecm−3. The quantum profiles are seen to display left
and right conspicuous peaks respectively located atk=2kF
and >2.246mv2/e2. They correspond to collective long-
range and collision short-range contributions, respectively.
The classical profilefFig. 2sadg shows only the long-range
peak. The collision peak increases in magnitude withE. In
this connection, it is instructive to zoom the largek section
of Figs. 2sbd and 2scd and replace Eq.s8d with half of it,

F1skd = − kE
0

kv

dv v Im
1 − sv2/c2d«sk,vd

«sk,vdfk2 − sv2/c2d«sk,vdg
.

s88d

Expressions88d is thus plotted on Fig. 3 forn=1025 ecm−3,
u=1 with 1øEø50 MeV. It obviously documents the en-
ergy collisionally transferred from the electron projectile to
the target electron, with maximum valuemc2sg−1d in terms
of the Lorentz parameterg.

At this point we think it of interest to contrastssee Fig. 4d
the present quantum evaluations of REB energy losses with
earlier estimates based on a combination of collective stop-
ping arising from the excitation of Langmuir collective
modesf14g

−
dE

dx
=

2pne4

mb2c2lnF v
vplD

S2

3
D1/2G2

, s9d

in terms of the target electron plasma frequencyvp, with a
plasma adapted Möller relativistic expression for collisional
energy losses given byf15g

FIG. 2. Plot ofFskd fEq. s8dg at T=TF su=1d sad with classical
«sk,vd fEqs.s5d ands6dg E=2 MeV, n=1026 ecm−3; sbd with quan-
tum «sk,vd fEqs.s2d ands3dg, E=2 MeV, n=1026 ecm−3; scd with
quantum«sk,vd, E=20 MeV, n=1025 ecm−3.

FIG. 3. Plot ofF1skd fEq. s88dg, n=1025 ecm−3, T=TF in terms
of projectile velocity v and energyE: sad v0/c=0.9706, E0

=1 MeV; sbd v1/c=0.9987, E1=5 MeV; scd v2/c=0.9997, E2

=10 MeV; sdd v3/c=0.9999,E3=50 MeV.

STOPPING OF RELATIVISTIC ELECTRONS IN A… PHYSICAL REVIEW E 71, 026407s2005d

026407-3



−
dE

dx
=

2pne4

mb2c2Hln
1

2tmin
+ 0.125S t

t + 1
D2

−
s2t + 1d
st + 1d2 ln2 + 1 − ln2J , s10d

wheretmin
1/2 is the ratio of the de Broglie wave lengthle of the

relativistic projectile electrons to the target Debye length,

tmin
1/2 =

le

lD
=

s"/mvdÎ1 − b2

lD
, t = g − 1

with

g = s1 − b2d−1/2 andb = v/c.

A quick glance at Fig. 4 confirms that despite significant
quantitative discrepancies, the quantum and classical stop-
ping share the same basic trends.

IV. GLOBAL FEATURES

A first and highly conspicuous overall feature displayed
by quantum stopping estimates is a very small temperature
dependence for 0.2øuø5. This is true at moderate REB
energy sE=1 MeV on Fig. 5d and at high energysE
=50 MeV, Fig. 6d as well, as long asnø1026 ecm−3. At
higher target densities, theu splitting of the various stopping
profiles becomes increasingly more noticeable. Such a be-
havior confirms similar trends shared by classical target cal-
culations with a temperature above 1 keV.

IncreasingE in the ultrarelativistic domain causes to ap-
pear a striking difference between quantumscurve 1 on Fig.

7d and classicalscurve 2 on Fig. 7d stopping calculations. On
Fig. 7, the curve 3 depicts a convenient asymptotic formula
featuring polarization energy losses of the ultrarelativistic
electronf13g sv=cd,

−
dE

dx
=

2pne4

mc2 lnSmc2kmax
2

4pnc2 D , s11d

with kmax the inverse of the closest approach distance.
Classical stoppingscurve 2d is seen to decay with increas-

ing E at high velocity, in agreement with standard and non-
relativistic Bethe-like behavior,v−2. On the other hand,
quantum stoppingscurve 1d exhibits a steadily monotonic
increase withE, in the same relativistic velocity range. This
a priori counterintuitive behavior is actually in agreement
with an argument already presented in Jackson’s textbook
f16g whenv,c; the Bethe-like prefactor gets saturated atc−2

while the factoring stopping number can still increase with
E. What is actually surprising in the present context, is that
we need a full fledged TEF quantum qualification to docu-

FIG. 4. Stopping power in plasma withn=1026 cm−3. sCurve 1d
Classical polarizationfEq. s9dg+ collisional energy losses in plasma
fEq. s10dg, with u=1. sCurve 2d Classical polarizationfEq. s9dg
+ collisional energy losses in plasmafEq. s10dg, with u=2.
sCurve 3d Our numerical calculation with quantum dielectric
function fEqs. s2d and s3dg in plasma withu=1. sCurve 4d Our
numerical calculation with quantum dielectric functionfEq. s2d
and s3dg in plasma withu=2.

FIG. 5. REB stopping at 1 MeV in TEF in terms of electron
number densityn and Fermi temperatureTF.

FIG. 6. Same as in Fig. 5 for 50 MeV REB.
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ment a straightforward and relativistic kinematic trend.
The following expression has been obtained as a careful

pseudoanalytic fit to quantum stopping results. It is essen-
tially accurate fornø1026 ecm−3, as evidenced from stop-
ping data contrasted in Table I. It reads as

−
dE

dx
=

4pne4

mv2 lnS2mc2g2

"vp
D . s118d

V. RANGE AND PENETRATION DEPTH

Up to now, REB penetration in dense and supercom-
pressed DT plasma has been essentially viewed as a two-step
process. First, projectile electrons lose their kinetic energy
through inelastic collisions with the TEF considered classi-

cally. Then, the projectile trajectories get deflected by elastic
and multiple scattering on the TIF.

This latter mechanism advocates for nonrectilinear REB
trajectories in cold matter as well as in hot plasmas. As a
consequence, the overall projectile particle rangeR in the
target is presumably much larger than the effective penetra-
tion depth, measuredsfor instanced from a given tangential
plane to a precompressed target. These arguments have al-
ready led us in the classical case to use the relationshipf17g

FIG. 7. REB stopping in target electron fluid atu=5 in terms of
electron projectile energy. Curve 1, quantum«sk,vd fEqs. s2d and
s3dg; curve 2, classical«sk,vd fEqs. s5d and s6dg; curve 3,
asymptotic expressions11d. n=sad1023 andsbd1025 ecm−3.

TABLE I. ApproximatefEq. s118dg vs quantum stopping powers
sin MeV/cmd.

Projectile velocity
and energy Approximation

formula s118d
Quantum data

b E sMeVd u=0.2 % u=5 %

n=1023 cm−3

0.94108 1 0.6774 0.6848 1.1 0.6848 1.1

0.97908 2 0.6529 0.6620 1.4 0.6620 1.4

0.99569 5 0.6717 0.6814 1.4 0.6814 1.4

0.99882 10 0.7005 0.7103 1.4 0.7103 1.4

0.99969 20 0.7334 0.7432 1.3 0.7432 1.3

0.99995 50 0.7789 0.7888 1.3 0.7888 1.3

n=1024 cm−3

0.94108 1 6.1109 6.1850 1.2 6.1873 1.2

0.97908 2 5.9160 6.0072 1.5 6.0099 1.6

0.99569 5 6.1245 6.2215 1.6 6.2246 1.6

0.99882 10 6.4163 6.5143 1.5 6.5177 1.6

0.99969 20 6.7462 6.8445 1.4 6.8483 1.5

0.99995 50 7.2023 7.3007 1.4 7.3049 1.4

n=1025 cm−3

0.94108 1 55.481 55.227 1.4 55.331 1.5

0.97908 2 53.036 53.955 1.7 54.074 1.9

0.99569 5 55.324 56.302 1.7 56.441 2.0

0.99882 10 58.278 59.268 1.7 59.422 1.9

0.99969 20 61.588 62.582 1.6 62.751 1.9

0.99995 50 66.152 67.148 1.5 67.339 1.8

n=1026 cm−3

u=0.2 % u=5 %

0.94108 1 478.52 486.24 1.6 490.60 2.5

0.97908 2 469.12 478.61 2.0 483.72 3.0

0.99569 5 494.02 504.19 2.0 510.25 3.2

0.99882 10 523.94 534.27 1.9 541.07 3.2

0.99969 20 557.14 567.56 1.8 575.12 3.1

0.99995 50 602.81 613.31 1.7 621.88 3.1

n=1028 cm−3

0.94108 1 34595 35971 3.8 38338 9.8

0.97908 2 34664 36374 4.7 44995 22.9

0.99569 5 37560 39535 5.0 55346 32.1

0.99882 10 40625 42761 5.0 62941 35.5

0.99969 20 43965 46223 4.9 69589 36.8

0.99995 50 48538 50731 4.3 76400 36.5
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R= , +
,2

2l̄
+

,3

2l̄2
, s12d

connecting rangeR and effective penetration depth,. Equa-
tion s12d indeed includes any projectile orientation out of a
fixed framing plane, mimicking, for instance, a virtual pho-

tographic plate. In Eq.s12d, l̄ features theb averagef6g

1

l̄
= sbmax− bmind−1E

bmin

bmax db

l
s13d

for the square average deflection per unit path lengthf18g
sZ=1, A=2.5d

l−1 scm−1d = 8pS e2

mec
2D2ZsZ + 1d

Ab4 s1 − b2dNAr

3 FlnS 137b

Z1/3s1 − b2d1/2D + lns1.76d − S1 +
b2

4
DG

s14d

in terms of the Avogadro numberNA and target density in
g/cm3. Z andA denote the usual electric and atomic numbers
for the target nuclei. HereZ=1 andA=2.5 for an equiatomic
DT mixture.

On Fig. 8, the REB rangeR is contrasted with the pen-
etration depths, and,0. The latter quantity refers to Eq.s12d
with the cubic term deleted in its right-hand side.,0 corre-
sponds to multiple scattering restricted to small angle deflec-
tions. On the other hand, the cubic term secures contributions
from rare but large angle scattering events.

It should be appreciated that the presentR quantum esti-
mates are nearly a factor of 2 er than classical ones based on
Eqs. s9d and s10d obtained in the same beam-target condi-
tions.

A relevant and somewhat detailed tabulation of quantum
R valuessin micrometersd is provided in Table II for a DT
target at 300 g/cm3 and various temperatures.

The three pertinent lengthsR, ,, and,0 satisfy the obvi-
ous inequalities

, , ,0 , R, s15d

as confirmed on Fig. 8.

VI. OUTLOOK: RELEVANCE TO FAST IGNITION

We focused attention on stopping mechanisms affecting
REB’s considered in the MeV energy range, and interacting
with an arbitrary degenerate electron fluid at densitiesn
ù1023 ecm−3. In particular, we intended to stress specific
stopping features due to the target electron degeneracy. This
is efficiently performed within a RPA framework which al-
lows us to include in a single formulation long-range effects
as well as those of short-range collisions on the projectile
energy loss. Then we confirmed a very smallu dependence
of the relativistic stopping results, already evidenced in pre-
vious classicalsu@1d TEF modeling. We also checked that
the expected increase of stopping power with relativistic ki-
netic energy demands that the TEF degeneracy be taken into
account. Finally, an efficient compact and pseudoanalytic ex-
pressionfEq. s118dg has been obtained in the ultrarelativistic
limit.

As far as the feasibility of the FI concept is considered we
got a factor of 2 reduction for the REB penetration depth in
the core of precompressed DT fuel.

So ignition scenarios based on the former classical TEF
formulation remain basically unchangedf19g, as well as their
provisional expectations.

As a final point it has to be recalled that the most delete-
rious effect that could prevent an efficient REB penetration
toward the dense fuel core is featured by the Weibel electro-
magnetic instabilitysWEId, able to divert swiftly and trans-
versally to the initial REB orientation a significant fraction of
its kinetic energy. So, a crucial figure of merit is the number
of WEI e-foldings

Ne-fold = dmaxTstop, s16d

in terms of the REB relativistic stopping time

FIG. 8. Range and penetration depths, and ,0 in a DT target
with 300 g/cm3 density andT=TF. ,0 denotes the penetration depth
restricted to the quadratic term in the right-hand side of Eq.s12d.

TABLE II. Quantum REB ranges in micrometers computed be-
tweenEsb1d, the initial energy, andEsb0d=Esb1d /20 for a DT tar-
get at 300 g/cm3 and severalu values.

Velocities
sb=v /cd Relativistic ranges

Projectile
initial energysMeVd b0–b1 u=0.2 u=1 u=5

0.5 0.3018–0.8629 9.01 9.00 8.99

1 0.4127–0.9411 22.68 22.67 22.58

1.5 0.4895–0.9672 37.03 37.00 36.82

2 0.5482–0.9791 51.41 51.37 51.09

5 0.7410–0.9957 134.55 134.43 133.52

10 0.8629–0.9988 263.61 263.31 261.37

20 0.9411–0.9997 504.21 503.58 499.59

50 0.9855–0.9999 1171.74 1170.32 1160.23
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Tstop=
1

c
E

Eb
min

Eb
max 1 +

Eb

mec
2

FS Eb

mec
2DS Eb

mec
2 + 2

DG1/2

dEb

dEb

dx

>
100

4
3 s10−4 cmd 3

1

bbcscm/sd

> 10−13 s for a 1 MeV REB s17d

traveling through 25µm of a constant density TEF.
We left to a forthcoming work the investigation of in-

flight electron-electron correlations in a dense REB imping-
ing on a quantum TEF. Previous studies restricted to a clas-
sical target already documented a substantial range
shortening arising from these relativistic and dynamical two-
body intrabeam correlationsf20g.

We now turn to estimating thedmax implied in Eq.s16d.
The interaction processes involved in the stopping of in-

tense relativistic electron beams are monitored by a compe-
tition between collisionally dominated stopping mechanisms
and nearly instantaneous beam energy loss due to fast rising
electromagnetic instabilitiesf21g.

Let us now consider a current neutral beam-plasma sys-
tem. The relativistic REB propagates with the velocityvd

b and
the plasma return current flows with velocityvd

p. It is reason-
able to assume that an electromagnetic mode hask normal to
vd

b, perturbed electric fieldE parallel to vd
b, and perturbed

magnetic fieldB normal to bothvd
b andE. So the total asym-

metric f0 consists of nonrelativistic background electrons and
relativistic beam electronsf22g

f0spd =
np

2pmsux
puy

pd1/2expS−
spx + pd

pd2

2mux
p −

py
2

2muy
pD

+
nb

2pmgsux
buy

bd1/2expS−
spx + pd

bd2

2mgux
b −

py
2

2mguy
bD .

s18d

Here ux and uy are the temperature components parallel to
the x andy directions,pd is the drift momentum, the super-
scriptsp andb represent the plasma and the beam electron,
respectively. From the linearized Vlasov equation with colli-
sion termn and linearized Maxwell’s equations we get linear
dispersion relations for a purely growing mode. The collision
term n=np+nb is explained as a superposition of target and
beam plasma contributions. In Eq.s18d the drift momentum
should read as

pd
b = mgvb and pd

p = pd
b nb

gnp
s19d

in terms ofg=s1−vb
2/c2d−1/2 andvb, the beam velocity.

The WEI growth rates and wave number obviously take
the formssvp is the target plasma frequencyd

x =
d

vp
and y =

kc

vp
s20d

with corresponding normalized collision frequenciesf23g

n1 =
nb

vp
and n =

np

vp
. s21d

Transverse velocities play a pivotal role in the WEI growth
rate analysis. They read, respectively, as

v1 =
vy

b

c
and v2 =

vy
p

c
s22d

together with the beam-target density ratio

r =
nb

gnp
. s23d

With these expressions, one can then specialize the evalua-
tion of the plasma Fried-Conte dielectric function through
suitable asymptotic expansions. This procedure then leads to
four typical beam-target combinations based on the asymme-
try parameters,

FIG. 9. Linear and quasilinear electromagnetic growth rates for
a 5 MeV REB withnb=1022ecm−3 and Tb=1 MeV impinging an
electron target withnp=100nb and Tp=100 sad and 1 keV sbd.
Curves are parametrized with respect to to normalized collision
frequenciesnstargetd with negligible intrabeam scatteringsn1=0d.
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A =
ux

p + pd
p2/m

uy
p , B =

ux
b + pd

b2/mg

uy
b . s24d

Up to now we restricted our attention to a linear WEI
analysis. More accurate growth ratessGRd are expected by
retaining particle motion in the target plasma under local
electric and magnetic fields. Sophisticated treatments refer to
the Dupree-Weinstock analysisf24g of the so-called weak
turbulence. In the present context these considerations lead
us to complete specification ofA andB with f23g

A8 =
ATp

Tp + XD
, B8 =

BTb

Tb + XD
, s25d

whereX denotes the largest solution of

s1 + rdX4 − Fr
pd

b2

smgd2 +
ux

p

m
+

pd
p2

m2 − s1 + rdSuy
p

m
+

uy
b

m
DGX2

− Fr
pd

b2

smgd2

uy
p

m
Sux

p

m
+

pd
p2

m2D uy
b

mg
− s1 + rd

uy
p

m

uy
b

mg
G = 0,

s26d

andD=511rs1−g−2d. Tp andTb are in keV. In the following

we shall restrict attention to isotropic distributions withux
p

=uy
p andux

b=uy
b.

Typical REB target interactions of FI interest are depicted
on Figs. 9sad and 9sbd through linearsLd and quasilinear
sQLd growth rates.

Increasing significantly the target plasma density and the
beam temperaturesFig. 9d make negligible the intrabeam
collision term satisfying nown1, , ,n. The very highTb
value, in the MeV range, erases very efficiently any positive
growth rate, thus featuring a beam-target interaction stable at
any plasma wave numberk.

These preliminary results highlight the cone-angle sce-
nario f25,2g with laser produced electrons close to the high-
est density core in precompressed DT fuel. In this case, with
dmaxø0, one obviously keepsNe-fold=0. In practice,Ne-fold
ø5–6 appears tolerable which meansdmax,1014 s−1 fcf.
Eq. s17dg.
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